Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt).

نویسندگان

  • Elena González-Toril
  • Esther Santofimia
  • Enrique López-Pamo
  • Antonio García-Moyano
  • Ángeles Aguilera
  • Ricardo Amils
چکیده

The Iberian Pyrite Belt, located in Southwestern Spain, represents one of the world's largest accumulations of mine wastes and acid mine drainages. This study reports the comparative microbial ecology of the water column of Nuestra Señora del Carmen acid pit lake with the extreme acidic Río Tinto basin. The canonical correspondence analysis identified members of the Leptospirillum, Acidiphilium, Metallibacterium, Acidithiobacillus, Ferrimicrobium and Acidisphaera genera as the most representative microorganisms of both ecosystems. The presence of archaeal members is scarce in both systems. Only sequences clustering with the Thermoplasmata have been retrieved in the bottom layer of Nuestra Señora del Carmen and one station of Río Tinto. Although the photosynthetically active radiation values measured in this lake upper layer were low, they were sufficient to activate photosynthesis in acidophilic microorganisms. All identified photosynthetic microorganisms in Nuestra Señora del Carmen (members of the Chlamydomonas, Zygnemopsis and Klebsormidium genera) are major members of the photosynthetic eukaryotic community characterized in Río Tinto basin. This study demonstrates a close relationship between the microbial diversity of Nuestra Señora del Carmen pit lake and the diversity detected in the Río Tinto basin, which underlain the influence of the shared mineral substrates in the microbial ecology of these ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars

The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven th...

متن کامل

Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

The Iberian Pyrite Belt (IPB) hosts one of the world's largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and mi...

متن کامل

Microbial ecology of an extreme acidic environment, the Tinto River.

The Tinto River (Huelva, southwestern Spain) is an extreme environment with a rather constant acidic pH along the entire river and a high concentration of heavy metals. The extreme conditions of the Tinto ecosystem are generated by the metabolic activity of chemolithotrophic microorganisms thriving in the rich complex sulfides of the Iberian Pyrite Belt. Molecular ecology techniques were used t...

متن کامل

Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment.

Due to its highly metalliferous waters and low pH, the Rio Tinto has shown its potential for modelling both acid mine drainage systems and biohydrometallurgical operations. Most geomicrobiological studies of these systems have focused on the oxic water column. A sequence-based approach in combination with in situ detection techniques enabled us to examine the composition and structure of the mi...

متن کامل

Importance of the iron cycle in biohydrometallurgy

After the discovery in the 1940s that acid mine drainage was mainly a consequence of the metabolism of chemolithoautotrophic microorganisms able to oxidize metal sulfides, mostly pyrite, much research has been performed to understand the ecology and the physiology of the microorganisms involved. At first, to prevent this environmental problem, and later to improve the efficiency of biohydrometa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International microbiology : the official journal of the Spanish Society for Microbiology

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2014